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▪ Overview

▪ Multicore Programming

▪ Multithreading Models

▪ Thread Libraries

▪ Implicit Threading

▪ Threading Issues

▪ Operating System Examples



Objectives
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▪ Identify the basic components of a thread, and contrast threads and processes

▪ Describe the benefits and challenges of designng multithreaded
applications

▪ Illustrate different approaches to implicit threading including thread pools, fork-
join, and Grand Central Dispatch

▪ Describe how the Windows and Linux operating systems represent threads

▪ Design multithreaded applications using the Pthreads, Java, and Windows
threading APIs



Terminology
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▪ Multiprogramming

• A computer running more than one program at a time (like running Excel
and Firefox simultaneously)

• Context switching

▪ Multiprocessing

• A computer using more than one CPU (processor) or core at a time

▪ Multitasking

• Multitasking is a logical extension of multi programming (time sharing)

• Tasks sharing a common resource (like 1 CPU)

▪ Multithreading

• Thread (a code segments)

• is an extension of multitasking

https://www.geeksforgeeks.org/difference-between-multitasking-multithreading-and-multiprocessing/

https://www.8bitavenue.com/difference-between-multiprogramming-multitasking-multithreading-and-
multiprocessing/



Two Characteristics of Processes
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Resource Ownership

Process includes a virtual
address space to hold the
process image

■ The OS performs a protection
function to prevent unwanted
interference between processes
with respect to resources

Scheduling/Execution

Follows an execution path 
that may be interleaved with 
other processes

■ A process has an execution 
state (Running, Ready, etc.) 
and a dispatching priority, and 
is the entity that is scheduled 
and dispatched by the OS



Processes and Threads
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▪ These two process characteristics are treated independently 

by the operating system

▪ The unit of execution (CPU utilization) is referred to as a 

thread or lightweight process.

▪ The unit of resource ownership is referred to as a 

process or task.



Processes and Threads
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■ The unit of dispatching is referred to as a thread or
lightweight process

■ The unit of resource ownership is referred to as a process or
task

■ Multithreading - The ability of an OS to support multiple,
concurrent paths of execution within a single process



Single and Multithreaded Processes
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Motivation
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▪ Most modern applications are multithreaded

▪ Example:

• Web browser: one thread displays images or text while another thread 
receives data from the network

• Word processor: a thread for displaying the graphics, another one for
responding to keystrokes, and a third thread for performing spelling and 
grammar checking.

▪ Threads run within application

▪ Multiple tasks with the application can be implemented by separate threads

• Update display

• Fetch data

• Spell checking

• Answer a network request

▪ Process creation is heavy-weight while thread creation is light-weight

▪ Can simplify code, increase efficiency

▪ Kernels are generally multithreaded



Key Benefits of Threads

Takes less 
time to 

create a new 
thread than a 

process

Less time to 
terminate a 

thread than a 
process

Switching 
between two 

threads takes less 
time than 

switching between 
processes

Threads enhance 
efficiency in 

communication 
between programs
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Threads can communicate with each other without invoking the kernel.



■ In an OS that supports threads, scheduling and dispatching
is done on a thread basis

Most of the state information dealing with execution is
maintained in thread-level data structures

Suspending a process involves suspending all threads of
the process

Termination of a process terminates all threads 
within the process
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Multithreaded Server Architecture
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Benefits
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▪ Responsiveness – may allow continued execution if part of process is 
blocked, especially important for user interfaces

▪ Resource Sharing – threads share resources of process, easier than 
shared memory or message passing

▪ Economy – cheaper than process creation, thread switching lower 
overhead than context switching

▪ Scalability – process can take advantage of multicore architectures

• Utilization of multiprocessor architectures. Such that threads can 
run in parallel on different processors.



Single Threaded Approaches
■ A single thread of execution

per process, in which the
concept of a thread is not 
recognized, is referred to as
a single-threaded approach

■ MS-DOS is an
example

Figure 4.1 Threads and Processes

one process 
one thread

one process 
multiple threads

multiple processes 
one thread per process

= instruction trace

multiple processes 
multiple threads per process
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Multithreaded Approaches
■ The right half of 

Figure 4.1 depicts 
multithreaded 
approaches

■ A Java run-time 
environment is an 
example of a system 
of one process with 
multiple threads

Figure 4.1 Threads and Processes

one process  
one thread

one process 
multiple threads

multiple processes 
one thread per process

= instruction trace

multiple processes 
multiple threads per process
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One or More Threads in a Process

Each thread has:

• An execution state (Running, Ready, etc.)
• A saved thread context when not running
• An execution stack
• Some per-thread static storage for local variables
• Access to the memory and resources of its processes,

shared with all other threads in that process
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Single Threaded and Multithreaded Process Models
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Multicore Programming
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▪ Multicore or multiprocessor systems putting pressure on programmers, 
challenges include:

• Dividing activities

• Balance

• Data splitting

• Data dependency

• Testing and debugging

▪ Parallelism implies a system can perform more than one task simultaneously

▪ Concurrency supports more than one task making progress

• Single processor / core, scheduler providing concurrency



Concurrency vs. Parallelism
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Concurrency vs. Parallelism

Silberschatz, Galvin and Gagne ©20184.20Operating System Concepts – 10th Edition



Concurrency vs. Parallelism

▪ Concurrent execution on single-core system:

▪ Parallelism on a multi-core system:
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Multicore Programming
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▪ Types of parallelism

• Data parallelism – distributes subsets of the same data across 
multiple cores, same operation on each

• Task parallelism – distributing threads across cores, each thread 
performing unique operation



Data and Task Parallelism
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Types of Threads

User Level 
Thread (ULT)

Kernel level
Thread (KLT)
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Threads Implementation
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▪ User Level Thread (ULT)

▪ Kernel Level Thread (KLT) also called:

▪ Kernel-supported thread

▪ Lightweight process



User Threads and Kernel Threads
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▪ User threads - management done by user-level threads library

▪ Three primary thread libraries:

• POSIX Pthreads

• Windows threads

• Java threads

▪ Kernel threads - Supported by the Kernel

▪ Examples – virtually all general-purpose operating systems, including:

• Windows

• Linux

• Mac OS X

• iOS

• Android



User and Kernel Threads
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User-Level Threads (ULTs)

■ All thread management is done 
by the application using a thread
library
■ The user library contains code 

for creating threads, destroying 
threads, scheduling thread 
execution and …

■ The kernel is not aware of the 
existence of threads

P
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Threads  
Library

Kernel  
Space

(a) Pure user-level
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Scheduling can be application 
specific and specify by programmer

ULTs can run on any OS, even the ones that 
do not support multithreading like embedded 
OSs.

Less overhead: Thread switching does 
not require kernel mode privileges
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Disadvantages of UL T s
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■ In a typical OS many system calls are blocking
▪ As a result, when a ULT executes a system call, not only is that thread

blocked, but all of the threads within the process are blocked as well

■ In a pure ULT strategy, a multithreaded application cannot
take advantage of multiprocessing

▪ A kernel assigns one process to only one processor at a time, therefore, only
a single thread within a process can execute at a time



Kernel-Level Threads (KLTs)
▪ Thread management is done by 

the kernel
▪ There is no thread management 

code in the application level, 
simply an application 
programming interface (API) to 
the kernel thread facility

▪ The kernel maintains context 
information for the process and 
threads

▪ Scheduling is done on a thread 
basis

▪ Windows is an example of this 
approach
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Advantages of K L T s

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

■ The kernel can simultaneously schedule multiple threads
from the same process on multiple processors

■ If one thread in a process is blocked, the kernel can schedule
another thread of the same process

■ Kernel routines themselves can be multithreaded (in all
modern OSs)



Disadvantage of K L T s
 The transfer of control from one thread to another within the same

process requires a mode switch to the kernel (increase overhead for
OS)

Operation User-Level Threads
Kernel -Level  

Threads Processes

Null Fork 34 948 11,300

Signal Wait 37 441 1,840

Table 4.1
Thread and Process Operation Latencies
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Combined Approaches
■ Thread creation is done completely in

■

the user space, as is the bulk of the
scheduling and synchronization of
threads within an application

• The multiple ULTs from a single 
application are mapped onto some 
(smaller or equal) number of KLTs.

■ Solaris is a good example

• Windows and Linux are Kernel-
level

■ JVM: mapped user Java threads into 
Kernel threads. Possibilities: One-to-
one, many-to-many and …The 
mapping can be different in 
Windows from Linux and …

P P
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Space

(c) Combined
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Multithreading Models
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▪ Many-to-One == ULT

▪ One-to-One == KLT

▪ Many-to-Many == Combined approaches



Many-to-One

▪ Many user-level threads mapped to single kernel thread

▪ One thread blocking causes all to block

▪ Multiple threads may not run in parallel on muticore system because only one
may be in kernel at a time

▪ Few systems currently use this model

▪ Examples:

• Solaris Green Threads

• GNU Portable Threads
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One-to-One

▪ Each user-level thread maps to kernel thread

▪ Creating a user-level thread creates a kernel thread

▪ More concurrency than many-to-one

▪ Number of threads per process sometimes restricted due to overhead

▪ Examples

• Windows

• Linux
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Many-to-Many Model

▪ Allows many user level threads to be mapped to many kernel threads

▪ Allows the operating system to create a sufficient number of kernel threads

▪ Windows with the ThreadFiber package

▪ Otherwise not very common
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Two-level Model

▪ Similar to M:M, except that it allows a user thread to be bound to kernel thread
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Thread Libraries
Multithread Programing
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▪ Thread library provides programmer with API for creating and managing threads

▪ Pthreads library:

• Common in UNIX-like operating systems (Linux, macOS, Solaris)

▪ Win32 threads

▪ Java threads (threads in application-level)

▪ Two primary ways of implementing

• Library entirely in user space

• Kernel-level library supported by the OS



Pthreads
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▪ May be provided either as user-level or kernel-level

▪ A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization

▪ Specification, not implementation

▪ API specifies behavior of the thread library, implementation is up to development
of the library

▪ Common in UNIX operating systems (Linux & Mac OS X)



Pthreads Example
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Pthreads Example (Cont.)
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Pthreads Code for Joining 10 Threads
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End of Chapter 4
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