
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 4: Threads &
Concurrency

Outline

Silberschatz, Galvin and Gagne ©20184.2Operating System Concepts – 10th Edition

▪ Overview

▪ Multicore Programming

▪ Multithreading Models

▪ Thread Libraries

▪ Implicit Threading

▪ Threading Issues

▪ Operating System Examples

Objectives

Silberschatz, Galvin and Gagne ©20184.3Operating System Concepts – 10th Edition

▪ Identify the basic components of a thread, and contrast threads and processes

▪ Describe the benefits and challenges of designng multithreaded
applications

▪ Illustrate different approaches to implicit threading including thread pools, fork-
join, and Grand Central Dispatch

▪ Describe how the Windows and Linux operating systems represent threads

▪ Design multithreaded applications using the Pthreads, Java, and Windows
threading APIs

Terminology

Silberschatz, Galvin and Gagne ©20184.4Operating System Concepts – 10th Edition

▪ Multiprogramming

• A computer running more than one program at a time (like running Excel
and Firefox simultaneously)

• Context switching

▪ Multiprocessing

• A computer using more than one CPU (processor) or core at a time

▪ Multitasking

• Multitasking is a logical extension of multi programming (time sharing)

• Tasks sharing a common resource (like 1 CPU)

▪ Multithreading

• Thread (a code segments)

• is an extension of multitasking

https://www.geeksforgeeks.org/difference-between-multitasking-multithreading-and-multiprocessing/

https://www.8bitavenue.com/difference-between-multiprogramming-multitasking-multithreading-and-
multiprocessing/

Two Characteristics of Processes

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Resource Ownership

Process includes a virtual
address space to hold the
process image

■ The OS performs a protection
function to prevent unwanted
interference between processes
with respect to resources

Scheduling/Execution

Follows an execution path
that may be interleaved with
other processes

■ A process has an execution
state (Running, Ready, etc.)
and a dispatching priority, and
is the entity that is scheduled
and dispatched by the OS

Processes and Threads

Silberschatz, Galvin and Gagne ©20184.6Operating System Concepts – 10th Edition

▪ These two process characteristics are treated independently

by the operating system

▪ The unit of execution (CPU utilization) is referred to as a

thread or lightweight process.

▪ The unit of resource ownership is referred to as a

process or task.

Processes and Threads

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

■ The unit of dispatching is referred to as a thread or
lightweight process

■ The unit of resource ownership is referred to as a process or
task

■ Multithreading - The ability of an OS to support multiple,
concurrent paths of execution within a single process

Single and Multithreaded Processes

Silberschatz, Galvin and Gagne ©20184.8Operating System Concepts – 10th Edition

Motivation

Silberschatz, Galvin and Gagne ©20184.9Operating System Concepts – 10th Edition

▪ Most modern applications are multithreaded

▪ Example:

• Web browser: one thread displays images or text while another thread
receives data from the network

• Word processor: a thread for displaying the graphics, another one for
responding to keystrokes, and a third thread for performing spelling and
grammar checking.

▪ Threads run within application

▪ Multiple tasks with the application can be implemented by separate threads

• Update display

• Fetch data

• Spell checking

• Answer a network request

▪ Process creation is heavy-weight while thread creation is light-weight

▪ Can simplify code, increase efficiency

▪ Kernels are generally multithreaded

Key Benefits of Threads

Takes less
time to

create a new
thread than a

process

Less time to
terminate a

thread than a
process

Switching
between two

threads takes less
time than

switching between
processes

Threads enhance
efficiency in

communication
between programs

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Threads can communicate with each other without invoking the kernel.

■ In an OS that supports threads, scheduling and dispatching
is done on a thread basis

Most of the state information dealing with execution is
maintained in thread-level data structures

Suspending a process involves suspending all threads of
the process

Termination of a process terminates all threads
within the process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Multithreaded Server Architecture

Silberschatz, Galvin and Gagne ©20184.16Operating System Concepts – 10th Edition

Benefits

Silberschatz, Galvin and Gagne ©20184.17Operating System Concepts – 10th Edition

▪ Responsiveness – may allow continued execution if part of process is
blocked, especially important for user interfaces

▪ Resource Sharing – threads share resources of process, easier than
shared memory or message passing

▪ Economy – cheaper than process creation, thread switching lower
overhead than context switching

▪ Scalability – process can take advantage of multicore architectures

• Utilization of multiprocessor architectures. Such that threads can
run in parallel on different processors.

Single Threaded Approaches
■ A single thread of execution

per process, in which the
concept of a thread is not
recognized, is referred to as
a single-threaded approach

■ MS-DOS is an
example

Figure 4.1 Threads and Processes

one process
one thread

one process
multiple threads

multiple processes
one thread per process

= instruction trace

multiple processes
multiple threads per process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Multithreaded Approaches
■ The right half of

Figure 4.1 depicts
multithreaded
approaches

■ A Java run-time
environment is an
example of a system
of one process with
multiple threads

Figure 4.1 Threads and Processes

one process
one thread

one process
multiple threads

multiple processes
one thread per process

= instruction trace

multiple processes
multiple threads per process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

One or More Threads in a Process

Each thread has:

• An execution state (Running, Ready, etc.)
• A saved thread context when not running
• An execution stack
• Some per-thread static storage for local variables
• Access to the memory and resources of its processes,

shared with all other threads in that process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Single-Threaded
Process Model

Process
Control
Block

User
Address
Space

User
Stack

Kernel
Stack

Process
Control
Block

User
Address
Space

User
Stack

Kernel
Stack

User
Stack

Kernel
Stack

User
Stack

Kernel
Stack

Control
Block

Thread

Figure 4.2

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Single Threaded and Multithreaded Process Models

Multithreaded
Process Model
Thread Thread

Thread Thread
Control
Block

Thread
Control
Block

Multicore Programming

Silberschatz, Galvin and Gagne ©20184.18Operating System Concepts – 10th Edition

▪ Multicore or multiprocessor systems putting pressure on programmers,
challenges include:

• Dividing activities

• Balance

• Data splitting

• Data dependency

• Testing and debugging

▪ Parallelism implies a system can perform more than one task simultaneously

▪ Concurrency supports more than one task making progress

• Single processor / core, scheduler providing concurrency

Concurrency vs. Parallelism

Silberschatz, Galvin and Gagne ©20184.19Operating System Concepts – 10th Edition

Concurrency vs. Parallelism

Silberschatz, Galvin and Gagne ©20184.20Operating System Concepts – 10th Edition

Concurrency vs. Parallelism

▪ Concurrent execution on single-core system:

▪ Parallelism on a multi-core system:

Silberschatz, Galvin and Gagne ©20184.21Operating System Concepts – 10th Edition

Multicore Programming

Silberschatz, Galvin and Gagne ©20184.22Operating System Concepts – 10th Edition

▪ Types of parallelism

• Data parallelism – distributes subsets of the same data across
multiple cores, same operation on each

• Task parallelism – distributing threads across cores, each thread
performing unique operation

Data and Task Parallelism

Silberschatz, Galvin and Gagne ©20184.23Operating System Concepts – 10th Edition

Types of Threads

User Level
Thread (ULT)

Kernel level
Thread (KLT)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Threads Implementation

Silberschatz, Galvin and Gagne ©20184.25Operating System Concepts – 10th Edition

▪ User Level Thread (ULT)

▪ Kernel Level Thread (KLT) also called:

▪ Kernel-supported thread

▪ Lightweight process

User Threads and Kernel Threads

Silberschatz, Galvin and Gagne ©20184.25Operating System Concepts – 10th Edition

▪ User threads - management done by user-level threads library

▪ Three primary thread libraries:

• POSIX Pthreads

• Windows threads

• Java threads

▪ Kernel threads - Supported by the Kernel

▪ Examples – virtually all general-purpose operating systems, including:

• Windows

• Linux

• Mac OS X

• iOS

• Android

User and Kernel Threads

Silberschatz, Galvin and Gagne ©20184.26Operating System Concepts – 10th Edition

User-Level Threads (ULTs)

■ All thread management is done
by the application using a thread
library
■ The user library contains code

for creating threads, destroying
threads, scheduling thread
execution and …

■ The kernel is not aware of the
existence of threads

P

User
Space

Threads
Library

Kernel
Space

(a) Pure user-level

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Scheduling can be application
specific and specify by programmer

ULTs can run on any OS, even the ones that
do not support multithreading like embedded
OSs.

Less overhead: Thread switching does
not require kernel mode privileges

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Disadvantages of UL T s

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

■ In a typical OS many system calls are blocking
▪ As a result, when a ULT executes a system call, not only is that thread

blocked, but all of the threads within the process are blocked as well

■ In a pure ULT strategy, a multithreaded application cannot
take advantage of multiprocessing

▪ A kernel assigns one process to only one processor at a time, therefore, only
a single thread within a process can execute at a time

Kernel-Level Threads (KLTs)
▪ Thread management is done by

the kernel
▪ There is no thread management

code in the application level,
simply an application
programming interface (API) to
the kernel thread facility

▪ The kernel maintains context
information for the process and
threads

▪ Scheduling is done on a thread
basis

▪ Windows is an example of this
approach

P

User
Space

Kernel
Space

(b) Pure kernel-level

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Advantages of K L T s

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

■ The kernel can simultaneously schedule multiple threads
from the same process on multiple processors

■ If one thread in a process is blocked, the kernel can schedule
another thread of the same process

■ Kernel routines themselves can be multithreaded (in all
modern OSs)

Disadvantage of K L T s
 The transfer of control from one thread to another within the same

process requires a mode switch to the kernel (increase overhead for
OS)

Operation User-Level Threads
Kernel -Level

Threads Processes

Null Fork 34 948 11,300

Signal Wait 37 441 1,840

Table 4.1
Thread and Process Operation Latencies

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Combined Approaches
■ Thread creation is done completely in

■

the user space, as is the bulk of the
scheduling and synchronization of
threads within an application

• The multiple ULTs from a single
application are mapped onto some
(smaller or equal) number of KLTs.

■ Solaris is a good example

• Windows and Linux are Kernel-
level

■ JVM: mapped user Java threads into
Kernel threads. Possibilities: One-to-
one, many-to-many and …The
mapping can be different in
Windows from Linux and …

P P

User
Space

Threads
Library

Kernel
Space

(c) Combined

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Multithreading Models

Silberschatz, Galvin and Gagne ©20184.34Operating System Concepts – 10th Edition

▪ Many-to-One == ULT

▪ One-to-One == KLT

▪ Many-to-Many == Combined approaches

Many-to-One

▪ Many user-level threads mapped to single kernel thread

▪ One thread blocking causes all to block

▪ Multiple threads may not run in parallel on muticore system because only one
may be in kernel at a time

▪ Few systems currently use this model

▪ Examples:

• Solaris Green Threads

• GNU Portable Threads

Silberschatz, Galvin and Gagne ©20184.35Operating System Concepts – 10th Edition

One-to-One

▪ Each user-level thread maps to kernel thread

▪ Creating a user-level thread creates a kernel thread

▪ More concurrency than many-to-one

▪ Number of threads per process sometimes restricted due to overhead

▪ Examples

• Windows

• Linux

Silberschatz, Galvin and Gagne ©20184.36Operating System Concepts – 10th Edition

Many-to-Many Model

▪ Allows many user level threads to be mapped to many kernel threads

▪ Allows the operating system to create a sufficient number of kernel threads

▪ Windows with the ThreadFiber package

▪ Otherwise not very common

Silberschatz, Galvin and Gagne ©20184.37Operating System Concepts – 10th Edition

Two-level Model

▪ Similar to M:M, except that it allows a user thread to be bound to kernel thread

Silberschatz, Galvin and Gagne ©20184.38Operating System Concepts – 10th Edition

Thread Libraries
Multithread Programing

Silberschatz, Galvin and Gagne ©20184.39Operating System Concepts – 10th Edition

▪ Thread library provides programmer with API for creating and managing threads

▪ Pthreads library:

• Common in UNIX-like operating systems (Linux, macOS, Solaris)

▪ Win32 threads

▪ Java threads (threads in application-level)

▪ Two primary ways of implementing

• Library entirely in user space

• Kernel-level library supported by the OS

Pthreads

Silberschatz, Galvin and Gagne ©20184.40Operating System Concepts – 10th Edition

▪ May be provided either as user-level or kernel-level

▪ A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization

▪ Specification, not implementation

▪ API specifies behavior of the thread library, implementation is up to development
of the library

▪ Common in UNIX operating systems (Linux & Mac OS X)

Pthreads Example

Silberschatz, Galvin and Gagne ©20184.41Operating System Concepts – 10th Edition

Pthreads Example (Cont.)

Silberschatz, Galvin and Gagne ©20184.42Operating System Concepts – 10th Edition

Pthreads Code for Joining 10 Threads

Silberschatz, Galvin and Gagne ©20184.43Operating System Concepts – 10th Edition

End of Chapter 4

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

